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Radar has been proposed as a way of tracking wake vortices to reduce aircraft spacing
and tests have revealed radar echoes from aircraft wakes in clear air. The mechanism
causing refractive index gradients in these tests is thought to be the same as that
for homogeneous and isotropic atmospheric turbulence in the Kolmogorov inertial
range, for which there is a scattering analysis due to Tatarski. In reality, however,
the structure of aircraft wakes has a significant coherent part superimposed with
turbulence, about whose structure very little is known. This work adopts a picture
of a coherent (in fact two-dimensional) wake to perform a scattering analysis and
calculate the reflected power. In particular, two simple mechanisms causing refractive
index gradients are considered: (A) radial pressure (and therefore density) gradient
in a columnar vortex arising from the rotational flow; (B) adiabatic transport of
atmospheric fluid within a descending oval surrounding a vortex pair. In the scattering
analysis, Tatarski’s weak scattering approximation is kept but the usual assumptions
of a far field and a uniform incident wave are dropped. Neither assumption is
generally valid for a wake that is coherent across the radar beam. For analytical
insight, an approximate analysis that invokes, in addition to weak scattering, the far-
field and wide cylindrical beam assumptions, is also developed and compared with
the more general analysis. Reflectivities calculated for the oval (mechanism B) are
within 2–13 dB m2 of the measurements (≈ −70 dB m2) of MIT Lincoln Laboratory
at Kwajalein atoll. However, the present predictions have a cut-off away from normal
incidence which is not present in the measurements. This implies that the two-
dimensional picture is not entirely complete. Estimates suggest that the thin layer of
vorticity which is baroclinically generated at the boundary of the oval is turbulent
and this may account for reflectivity away from normal incidence. The reflectivity of a
vortex (mechanism A) is comparable to that of the oval (mechanism B) but occurs at
a frequency (about 50 MHz) that is lower than those considered in all the experiments
to date. This result may be useful because: (i) existing atmospheric radars (known as
ST radars) already operate at this frequency and so the present prediction could be
verified; (ii) rain clutter is not a problem at this frequency; (iii) mechanism A is more
robust because it is independent of atmospheric stratification.

1. Introduction
1.1. Motivation

The photographs of fluid motion in Van Dyke’s (1982) album are all made possible
by an optical effect in the visual range of the electromagnetic spectrum, for instance
light scattering by smoke and the schlieren method. Fluid motions can also be ‘visible’
to radio waves: an article by Ottersten (1969) displays remarkable photographs of
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atmospheric vortices imaged by radar in clear air. These include buoyant vortex rings,
roll cells aligned with the wind in a stably stratified layer, and Kelvin–Helmholtz
rollers in the tropopause. Perhaps one day we will also see radar photographs of
aircraft wakes.

An important practical problem is that the vortex wakes of large aircraft pose a
hazard to following aircraft and therefore, during instrument take-offs and landings,
fixed distances are maintained between aircraft. These spacings are thought to be too
conservative most of the time and to increase airport capacity NASA has set itself
the goal of developing a system which dynamically sets the spacing (Perry, Hinton &
Stuever 1997). Several elements comprise this system including computer simulation
of wakes and vortex detection from the ground.

In the NASA effort, two methods of vortex detection are being concentrated upon:
Doppler lidar at infrared frequencies and radar. Lidar is the more mature of the
two and relies on scattering by aerosols. Field tests at airports using 10.6 µm lidar
(Campbell et al. 1997; Köpp 1994) have detected vortices at ranges of up to 300 m; in
clear weather this limit is set by the depth of focus of the optics. Hannon & Thomson
(1994) report ranges of up to 4 km at 2.09 µm using high-energy pulsed lidar.

There are three motivations for considering radar. First is the concern that lidar
cannot work in fog and rain due to absorption in the infrared range. Radar, on the
other hand, is unaffected by rain and fog at sufficiently low frequencies. The second is
that while lidar has adequate range to protect the modestly sized approach corridor
currently set by the planners, radar has a potentially greater range. Third, optical
systems tend to be more expensive to purchase and maintain than radar.

The present work focuses on clear air radar reflectivity of a vortex wake, that is,
reflectivity in the absence of fog and rain droplets, both of which are strong scatterers.

1.2. A thumbnail sketch of radar

Radar transmits a radio signal and from the reflections received, rejects unwanted
targets (clutter) by signal processing and determines the location of intended targets
and their speed along the line of sight to the receiver. In the context of clear air
detection of a wake, ‘targets’ are regions of the wake where there is a gradient of
refractive index. The two candidate targets considered in this work are (A) the core
of each vortex, which has a lower density and therefore lower index of refraction, and
(B) the oval surrounding the vortex pair which transports atmospheric air from one
altitude to another.

Each radar set usually operates at a single (carrier) frequency. The range to the
target is determined from the time delay of the echo and the speed from its Doppler
shift. This simple idea has reached a high level of maturity and some of its more
interesting applications include Earth-based imaging of asteroids (e.g. Ostro et al.
2000) and Earth-based radar mapping of Mercury at a resolution of 15 km (Harmon
et al. 1994).

The most common means of confining the transmission and reception to a narrow
beam along a preferred direction is a reflecting dish with a small antenna at the focus.
An array of antenna elements, arranged on the ground say, can also serve to form a
beam. In this case, the beam can be pointed by varying the phase between individual
elements. The larger the dish or array relative to the wavelength, the narrower the
beam and the larger the power flux density (power per unit area) at the target. The
power flux density (henceforth simply ‘power density’) at the target falls off as Rt

−2,
where Rt is the range from the transmitter to the target.

There is a large catalogue of waveforms (amplitude and frequency modulations of
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the carrier) which may be transmitted (Skolnik 1970, Chap. 3). The waveform can be
a continuous wave (CW) or a pulse. The narrower the waveform in the time domain
the better the range resolution but the speed resolution is worse, and conversely. If the
range resolution is fine enough, individual regions of refractive index gradient within
the wake may be discerned in the received signal. As reflections of a transmitted
waveform are received, they are placed into range bins by sampling in time, and into
Doppler bins by using a filter bank or a fast Fourier transform.

The receiver can either be co-located with the transmitter (the so-called monostatic
case) or be separated (called bistatic).

The radar cross-section (RCS), the main quantity of interest in this work, is simply
the power in the received signal, expressed so that it can be interpreted as the effective
area that intercepts the incident flux and reflects it. It is thus a measure of the overall
reflectivity of the target. We begin by defining it for the case of a time-harmonic wave.
Suppose that the power density (per unit area) incident upon the target is uniformly
P̄i,max. Here P̄i,max is the time-averaged (spatial) maximum power density within the
beam at the target. The radar cross-section, which has units of area, is defined such
that:

Time-averaged power scattered in the direction of the receiver = RCS× P̄i,max. (1.1)

The time-averaged power density at the receiver will be 1/(4πR2
r ) times the quantity

on the left-hand side of (1.1) and so one has:

RCS = 4πR2
r

time-averaged power density at the receiver

P̄i,max

. (1.2)

Here Rr is the receiver to target distance. Once the RCS of a target is known, the
transmitter power required to detect the target can be obtained (e.g. see § 7.1). Note
that the RCS is the same whether the target is large and each part weakly reflective
(like an aircraft wake) or small and each part highly reflective (like an insect).

1.3. Previous theoretical work

Currently, the means employed for calculating the clear-air reflectivity of aircraft
wakes (Marshall & Myers 1996) and for interpreting the results of radar tests
(Chadwick, Jordan & Detman 1984; Nespor et al. 1994) is the theory of Tatarski
(1961) for scattering by refractive index fluctuations in atmospheric turbulence. The
theory is based on the fact that in a turbulent velocity field the presence of mean
vertical gradients of potential temperature and humidity lead to fluctuations in
refractive index, n(x). The velocity field is assumed to be statistically homogeneous
and isotropic locally and to lie in the Kolmogorov inertial range. Refractive index
gradients are therefore also homogeneous and isotropic. A basic result of Tatarski’s
scattering analysis (irrespective of the fluid mechanics) is that if the wavenumber of
the incident radio wave is k, the only wavevector kn of the refractive index capable
of scattering to the observer is

kn = k(î − ô), (1.3)

where î and ô are unit vectors in the directions respectively of the incident wave and
the direction from the target to the observer. This is the so-called Bragg condition.

In particular for backscattering (ô = −î)
kn = 2kî. (1.4)
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Thus, the only flow wavevector which backscatters is aligned with the radar beam and
has twice the radar wavenumber. Though derived using a Fourier integral, this result
is understood intuitively by considering the requirement for constructive interference
of two reflections of a single ray that are spaced λn ≡ 2π/kn apart: accounting for the
round-trip, the second reflection lags the first by a distance 2λn and for constructive
interference this must equal mλ, where m is an integer. For m = 1 the result is the
same as (1.4). The requirement that the radar beam be aligned with the wavevector of
refractive index comes about because if the wavefronts of n(x) are tilted even slightly
relative to the incident wave, then for every reflected ray there exists another ray that
is phase shifted so as to exactly cancel it at the receiver.

After applying the scattering analysis to Kolmogorov turbulence, Tatarski’s theory
predicts that the radar cross-section per unit volume of isotropic turbulence in the
inertial range is (e.g. see Ottersten 1969)

η = 0.38C2
nλ
−1/3, (1.5)

where λ is the radar wavelength and η has units of L−1. The radar cross-section can
thus be obtained if one knows C2

n , the so-called second-order structure constant of
refractive index fluctuations. Equation (1.5) has become incorporated into the aircraft
vortex detection literature also, based on the belief that aircraft wake turbulence
creates a turbulent energy cascade similar to atmospheric turbulence.

Marshall & Myers (1996) calculated C2
n as a function of position in a Reynolds-

averaged calculation of a statistically two-dimensional vortex wake by using an
algebraic closure relation for C2

n in the inertial range in terms of gradients of mean
velocity and potential refractive index. This model is analogous to that given by
Ottersten (1969, p. 1184) for atmospheric turbulence. No evaluation of radar cross-
section was performed.

There are also classified reports cited by Gilson (1992) to which we were not
privy.

1.4. Present theoretical work

The present work retains only Tatarski’s weak scattering approximation but discards
the rest of his development for the following reasons.

(i) The flow is not homogeneous isotropic turbulence. For instance, turbulence
production is suppressed in the vortex cores (§ 6.1.2).

(ii) Tatarski’s analysis assumes that a uniform plane wave is incident upon tur-
bulence of infinite extent with the result that each unit volume produces a radar
cross-section given by (1.5). To obtain the power scattered from a non-uniform beam,
one would simply add the scattered powers from each part of the beam, assuming that
the scattered fields of different parts are uncorrelated. This is the kind of assumption
made in calculating the scattering due to a collection of rain drops. A vortex wake,
on the other hand, always fills the incident beam in one direction and can have
a coherence length that is comparable to the beam size. Thus one has to include
variation of beam strength at the outset.

(iii) Tatarski’s analysis also makes the assumption that the receiver is in the far
field (Fraunhoffer zone) of the scattering region (or more precisely, in the far field of
each region that may be considered uncorrelated with the rest). The condition that
should be satisfied for this to hold is

πL2
s

λRr

� 1, (1.6)
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where Ls is the coherence length of the scattering region and λ is the wavelength. For
homogeneous turbulence, Ls is about the size of an energy-containing eddy. However,
for an index of refraction that is strongly correlated across the beam, Ls ∼ Rtθb where
θb is the e−1 half beamwidth. In particular, for co-located transmitter and receiver
(1.6) becomes

εff =
πRrθ

2
b

λ
� 1. (1.7)

Ironically therefore, the far-field condition becomes more difficult to satisfy the further
one is from the target. Typical values of εff in the experiments of Chadwick et al.
(1984) and Gilson (1992) are 6 6 εff 6 15; the far-field assumption is thus untenable
if the wakes are coherent.

At any location downstream of the aircraft, the true state of the wake will lie
somewhere between the fully coherent and fully turbulent extremes and in this paper
we focus on the former extreme. To this end we assume that the wake is two-
dimensional and drop the assumptions of a uniform incident beam and far field.
One of the closing sections (§ 6) qualitatively discusses various three-dimensional
phenomena and how they might affect the present predictions.

1.5. Available experiments

(i) Noonkester & Richter (1980) detected the wakes of departing aircraft using
radar (f = 3 GHz, range R = 100–300 m). An interesting sinusoidal pattern was
observed in the trace of target height (directly above the radar) versus time. They
interpreted this to be hot engine exhaust spiralling around each vortex (and from
the trace we were able to calculate the vortex circulation). Whether engine exhaust
might be put to use for vortex detection during approach is briefly discussed in
§ 7.2.

(ii) Using a similar radar, Chadwick et al. (1984) detected the wakes of both de-
parting and arriving aircraft but do not distinguish between the two in their results.
The radar used was modest (200 W of power, 8 ft diameter dish) and the ranges were
R 6 1 km. The distribution functions of RCS in the atmosphere ahead of the plane
and in the wake behind the plane overlapped a little and for positive identification of
the wake, the authors suggested use of the spread in Doppler velocity. They suggested
two mechanisms for scattering. First, they argued that aircraft vortices created a
turbulent cascade similar to that assumed in the theory of atmospheric scattering
(Tatarski 1961) but with a C2

n higher than that of the ambient atmosphere. The
reflectivity lacked directional sensitivity which lent some credibility to the assumption
of isotropy. Second, they suggested that heat and moisture from the engine further
increase reflectivity.

(iii) Using a 1 MW pulse Doppler radar (f = 5.6 GHz, R = 2.7 km), Nespor et
al. (1994) detected the vortices of a small fighter aircraft in approach configuration
looking axially along the vortex.

(iv) So far, the best documented and controlled experiment and the one of direct
relevance to this work was conducted by Lincoln Laboratory at Kwajalein atoll
(Gilson 1992). The RCS of the wake of a C-5A was measured at a range of 15 km
using powerful pulse Doppler radars having 2–7 MW of peak power. This experiment
is remarkable in that simultaneous measurements were made at all six frequencies
available in several radar sets installed at Kwajalein. Returns were detectable at five
of these frequencies which ranged between 0.162 GHz and 5.7 GHz. There was no
return at 35 GHz suggesting (from the Bragg condition (1.4)) that the smallest scale
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responsible for scattering lies in the range 0.5 < λn < 2.6 cm. From the observation that
the radar cross-section was relatively flat as a function of frequency and dropped off
somewhere above f = 5.7 GHz, Gilson concluded that particulates were not involved
(they would give f4 Rayleigh scattering). He noted that the frequency dependence was
not the Kolmogorov f1/3. The RCS decreased with altitude and vanished above the
tropopause from which he concluded that the scattering mechanism was related to
‘low altitude climate’. We will see later that that the relevant fact here is the decrease
with altitude of the Brünt–Väisälä frequency, the measure of atmospheric density
gradient relative to the adiabatic gradient. Gilson found that the RCS measured
1 km behind the plane was insensitive to engine thrust and the RCS measured
at 10 000 ft altitude and 0.6 km behind the plane was insensitive to flap setting.
He thus concluded that the main mechanism was ‘turbulent mixing by the wake
vortices of existing atmospheric index of refraction gradients’. There can pre-exist in
the atmosphere both mean and turbulent gradients. This work attempts to predict
the measured RCS by taking up the suggestion that atmospheric gradients play a
role, assuming a calm atmosphere (and therefore only mean pre-existing gradients),
and replacing ‘turbulent mixing’ with a simple picture of atmospheric air that is
adiabatically compressed as it is transported downward within the oval surrounding
the vortex pair.

(v) Finally, let us point out some interesting efforts aimed at detecting aircraft
wakes using RASS (Radio Acoustic Sounding System), a technique that is now
routinely used for profiling atmospheric winds. In RASS, radar is used to detect
refractive index variations caused, remarkably, by sound waves launched into the
wake as a tracer. The sound waves are scattered by the vortex flow and they in
turn scatter an incident radio wave. The received radio signal is Doppler shifted
about the sound speed. When the contribution of the speed of sound is subtracted
out, the speed of the flow is revealed. There have been two studies. The first is
reported in Iannuzzelli et al. (1998) and the second in Rubin (2000) and Rubin et
al. (2000). The second seems promising. It uses a 915 MHz wind profiler. Rain and
fog clutter is strong at this frequency; however, the vortex return is distinguishable
from the clutter because it is Doppler shifted about the speed of sound. The sound
frequency, chosen to satisfy the Bragg condition (1.3) is 2 KHz for the 915 MHz
radar. At this frequency acoustic attenuation is about 16 dB km−1 which is rather
strong.

1.6. Outline of the paper

Section 2 presents two laminar and two-dimensional mechanisms for producing
refractive index variations and obtains the distributions of refractive index.

Given the index of refraction, in § 3 a scattering analysis using the Born weak
scattering approximation is performed. We shall refer to this as the ‘Born analysis’.
This analysis has to be implemented numerically and so, for analytical insight, a
simpler analysis (referred to as the ‘approximate analysis’) is presented in § 4. It
introduces the simplifications of a far field and a cylindrical beam that is wider than
the cross-sectional width of the target.

Section 5 presents numerical calculations for the radar cross-section, comparing the
Born analysis, approximate analysis, and experiment. Section 6 presents a qualitative
assessment of fluid dynamical effects not present in the two-dimensional picture and
their implications for radar reflectivity. Section 7 presents some practical recommen-
dations including sample characteristics for an ST (Stratospheric-Tropospheric) type
radar that exploits mechanism A. Section 8 contains conclusions.
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Weight Wingspan Vortex spacing Vortex circulation
Aircraft W (lb) b (ft) b0 (m) Γ (m2 s−1)

Heavy commercial at approach 500 000 200 47.88 526
DC-8 (super 62,63) at approach 240 000 148.4 35.42 324.7
C-5A at 5000 ft 551 155 223 53.4 387.6

Table 1. Parameters of aircraft considered in this work.

2. Two mechanisms for refractive index variation
The refractive index n of humid air for frequencies below 20 GHz is given by

Thayer (1974):

(n− 1)× 106 = 77.6
(pa
T

)
+ 64.8

(pv
T

)
+ 3.776× 105

( pv
T 2

)
. (2.1)

Here pa is the partial pressure (mb) of dry air, pv is the partial pressure (mb) of water
vapour and T is the temperature (K). The first two terms on the right-hand side of
(2.1) are due to the induced polarization of air and water molecules, respectively. The
third term is due to the permanent dipole moment of the water vapour molecule. The
value of pv can be obtained from the relative humidity, RH ≡ pv/psat, where psat is the
saturation pressure of water vapour and can be obtained as a function of temperature
using the formula in Reid, Prausnitz & Poling (1987, p. 757). We will use rationalized
MKS units (Jackson 1962, p. 611) throughout to write electrodynamic relationships.
Then, for a non-magnetic material, n = (ε/ε0)

1/2, where ε is the dielectric constant and
the subscript ‘0’ refers to vacuum.

Parameters of the three aircraft considered in this work are listed in table 1. The
first is representative of a heavy commercial aircraft (Boeing 747-400 or Airbus 340)
at sea level approach: the parameters were taken from Rennich (1997). Next is the
smaller DC-8 also at sea level approach: the weight W is the design landing weight
and the speed U is the full flaps speed at the given weight. Finally, there is the C-5A
transport of the Lincoln Laboratory experiment at 5000 ft. The vortex separation, b0,
and vortex circulation, Γ , were obtained from the following standard relationships,
both of which are derived using lifting line theory (Batchelor 1967, pp. 583–588) for
an elliptically loaded wing:

b0 =
πb

4
, Γ =

W

ρUb0

. (2.2)

The first relationship is deduced by equating the impulse of a point vortex pair to the
lift (times speed) predicted by the theory, while the second is obtained by combining
expressions for lift and circulation given by the theory.

2.1. Mechanism A: radial density gradient in the vortex cores

Mechanism A does not depend on atmospheric conditions. It arises simply from the
fact that if the entropy is constant, the density in the core of a vortex is lower because
the pressure is lower. Constancy of entropy is expected to hold due to lack of heating
or cooling of the rolling-up boundary layer. The radial momentum equation (for
laminar flow) together with the assumption of homentropic flow (p/ργ = constant)
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can be integrated to yield the radial density variation in each vortex:

ρ(r)

ρ∞
=

(
1− (γ − 1)

∫ ∞
r

1

r

V 2
θ

c2∞
dr

)1/(γ−1)

. (2.3)

Here c∞ and ρ∞ are the ambient speed of sound and density, respectively. Equation
(2.3) applies to both the density of water vapour and the density of air.

Two profiles of the circumferential velocity Vθ were considered. The first is the
Spreiter–Sacks–Rankine (SSR) model where the velocity profile is that of the Rankine
vortex,

Vθ(r) =
Γ

2πr

{
(r2/r2

0) for r < r0,
1 for r > r0,

(2.4)

with core radius r0 taking the Spreiter–Sacks (see Crow 1970) value of r0 = 0.0985b0

which they obtained by equating the energy of a lifting line to that of a pair of Rankine
vortices. The SSR model is known to overestimate the core size and to under-predict
the maximum circumferential velocities when compared to flight measurements (see
figure 1 in Widnall 1975). The second profile of circumferential velocity,

Vθ =
Γ

2πηb0

{
1189η2 for η < 0.0103,
[(1.27 + log(η)/4)−14 + 1]−1/14 otherwise,

(2.5)

was provided to us by Dr P. Spalart of Boeing; it represents his fit to flight observations
and, when included in a vortex pair model, gives a close match to the energy of an
elliptically loaded lifting line. Here

η ≡ r

b0

. (2.6)

To compute the index of refraction, n(r), within the vortex using (2.1) requires the
temperature, T (r), and partial pressures pa(r) and pv(r). Begin by obtaining ambient
conditions: take T∞ = 288 K (for which c∞ = 341 m s−1) and from it obtain the
saturation pressure in the ambient (psat,∞) using the formula in Reid et al. (1987, p. 757).
Multiplying psat,∞ by the ambient relative humidity (RH)∞ (an input parameter) gives
the vapour pressure in the ambient (pv,∞). Subtracting this from the total ambient
pressure (which we took to be 1013.25 mb) gives the partial pressure of dry air in the
ambient (pa,∞).

To obtain the partial pressures and temperature in the interior of the vortex, insert
a velocity profile into (2.3), integrate numerically to obtain ρ(r)/ρ∞ and then compute
the ratio p(r)/p∞ = (ρ(r)/ρ∞)γ . This ratio is the same for both vapour and dry air
and when multiplied by the appropriate ambient values gives partial pressures, pa(r)
and pv(r), in the vortex. Finally, to obtain the temperature use the ideal gas law:
T (r)/T∞ = (P (r)/P∞)/(ρ(r)/ρ∞).

Figure 1 plots the relative change

∆εr ≡ ε

ε∞
− 1 =

n2

n2∞
− 1 ≈ 2(n− n∞), (2.7)

in dielectric constant from its ambient value (ε∞). The approximation in (2.7) is based
on the fact that n = 1 + O(10−6). One observes that humidity has a weak influence
(compare curves of the same line type with and without symbols). The solid and
dotted curves compare ∆εr for the SSR and Spalart profiles, respectively, for a heavy
commercial airplane. The SSR profile results in a much less pronounced dip because
of its underestimation of velocities in the core. For the DC-8, only the results (dashed
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Figure 1. Distribution of ∆εr inside a vortex. Curves without symbols: dry air; curves with symbols:
relative humidity, (RH)∞ = 80%; ——, SSR profile for the heavy aircraft; · · · · · ·, Spalart profile
(2.5) for the heavy aircraft; – – – –, Spalart profile for the DC-8.

curves) for Spalart’s profile are shown and we observe that the peak strength of ∆εr
is diminished by about 30% compared to the heavy aircraft.

2.2. Mechanism B: Transport of atmospheric fluid in the oval surrounding the vortices

In § 2.2.1 the index of refraction inside a descending oval carrying atmospheric fluid
is obtained and in § 2.2.2 its value for the Kwajalein experiment for later use in
computing the RCS. This is followed in § 2.2.3 by a discussion of the qualitative
experimental evidence that supports a role for a descending oval in radar scattering.
A quantitative comparison with experiment will be presented later in the paper.

2.2.1. A two-dimensional steady-flow picture

Suppose that the vortex pair descends through a distance ∆z = zf − z from its
altitude of formation, zf . As it descends, it carries around it an oval of ambient
atmospheric fluid from zf . The oval has semi-axes 1.045b0 and 0.865b0 (Milne-
Thomson 1968, p. 360). In the scattering analysis we shall approximate the oval by
a cylinder of circular cross-section of radius a = 0.95b0 having a constant index of
refraction inside.

Let tildes denote fluid properties within the oval and let overbars denote properties
in the ambient atmosphere. Then introducing the total pressure, p = pa + pv , into
(2.1), converting to SI units, and eliminating pressure in favour of density using the
ideal gas law leads to the following equation for the difference in index of refraction
between the oval and the surrounding atmosphere:

[ñ(z)− n̄(z)]× 106 = 223[ρ̃(z)− ρ̄(z)]− 36.7[ρ̃v(z)− ρ̄v(z)]

+1.08× 106

[
ρ̃v(z)

T̃ (z)
− ρ̄v(z)

T̄ (z)

]
. (2.8)

Next we express (2.8) in terms of properties of the ambient atmosphere at level z.
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As it descends, the fluid in the oval compresses adiabatically in response to increasing
ambient pressure. A density difference, ρ̃(z)− ρ̄(z), from the ambient value will remain
only if the ambient atmospheric density gradient is different from the adiabatic one.
This difference is usually expressed in terms of the Brünt–Väisälä frequency N defined
so that for small ∆z (Pedlosky 1979)

ρ̃(z)− ρ̄(z) = − ρ̄(z)N2

g
∆z. (2.9)

The first term in (2.8), which represents the dry air contribution is thus determined.
For the second term write

ρ̃v(z)− ρ̄v(z) = ρ̄v(z)

(
ρ̃v(z)

ρ̄v(z)
− 1

)
(2.10)

= ρ̄v(z)

(
ρ̃(z)

ρ̄(z)
− 1

)
(2.11)

=
p̄v(z)ρ̄(z)

p̄(z)

(
ρ̃(z)

ρ̄(z)
− 1

)
(2.12)

= −RH(z)psat(T̄z)

p̄(z)

ρ̄(z)N2

g
∆z. (2.13)

Equation (2.11) is a consequence of combining the two expressions

ρ̃v(z)

ρ̄v(zf)
=

ρ̃(z)

ρ̄(zf)
,

ρ̄v(z)

ρ̄v(zf)
=

ρ̄(z)

ρ̄(zf)
, (2.14)

which express the fact that all constituents of the air compress by the same factor.
The replacement of ρ̄v(z) in (2.11) to obtain (2.12) is a consequence of the fact that
all constituents of the ambient air are at the same temperature.

For the third term in (2.8) we use the fact that the oval and ambient pressures are
equalized (ρ̃T̃ = ρ̄T̄ ) so that (2.9) gives

T̃ (z) = T̄

(
1 +

N2

g
∆z

)
, (2.15)

to linear order in ∆z. We may then write

ρ̃v(z)

T̃ (z)
− ρ̄v(z)

T̄ (z)
= −2ρ̄v(z)

T̄ (z)

N2

g
∆z (2.16)

= −2RH(z)psat(T̄z)

p̄(z)T̄ (z)

ρ̄(z)N2

g
∆z. (2.17)

The first equality uses (2.15) and (2.9), and the replacement of ρ̄v(z) to obtain (2.17)
is the same as in (2.12) and (2.13).

Putting all three terms together gives (in SI units)

[ñ(z)− n̄(z)]× 106 =
ρ̄(z)N2

g
∆z

[
−223 +

RH(z)

p̄(z)
(36.7− 2.16× 106/T̄ (z))

]
. (2.18)

Note that the index of refraction jump across the oval is proportional to the strati-
fication parameter N2 and descent altitude ∆z. The value of N near sea level varies
from average summer levels of 0.014 s−1 through mild winter values of 0.02 s−1 to
a value of 0.03 s−1 for a Fairbanks winter (W. D. Kriese, Boeing Aircraft, private
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communication; Pedlosky 1979, p. 331). Since the index of refraction change across
the oval diminishes with ∆z, the wake will be undetectable by this mechanism for
a sufficiently small wake descent. For the wake hazard problem what specification
should one impose on the minimum ∆z at which radar should be required to de-
tect the oval? The lifetime of trailing vortices has been measured to range between
1.5 and 8 τ units (Spalart 1998, his figure 1) where one τ unit corresponds to the
time taken for a vortex pair to descend one vortex separation distance. Hence the
minimum separation in time between aircraft that could ever be contemplated (in
the absence of techniques to destroy vortices) is 1.5 τ units. A vortex separation
distance of b0 = 47.88 m implies that the smallest descent for which the wake should
be detectable is 72 m. This assumes that stratification neither impedes nor speeds the
descent.

Using this value for ∆z, we calculated ∆εr ≈ 2∆n using P̄ (z), ρ̄(z), and T̄ (z) values
for the Standard Atmosphere at sea level and N = 0.017 s−1. For dry air we obtained
∆εr = −1.2 × 10−6 while for 80% relative humidity, ∆εr = −1.7 × 10−6, a small
difference.

2.2.2. Dielectric constant of the oval in the experiment (Gilson 1992)

We chose the case (Gilson’s run 15) having the lowest flight altitude (5000 ft). Note
that Gilson (1992) presents results for this run in his figure 29 and figure 21 which is
incorrectly labeled as run 16 (a similar error is present in table 6).

To secure a value for ∆εr we used the density and index of refraction vs. height
sounding given in Gilson (1992). Since gradients relative to adiabatic are needed, one
quantity had to be assumed to obtain them. This was the temperature at flight altitude
which we took to be 295 K assuming a balmy sea level temperature of 85 ◦F and
a lapse rate of −0.005 K m−1. By comparing the measured index of refraction with
the value for dry air at the local density we inferred that 7% relative humidity must
have been present at flight altitude. The value of the Brünt–Väisälä frequency N was
determined to be 0.017 s−1 by comparing the actual density gradient with the adiabatic
one. We need the descent altitude of the oval 66 s after aircraft passage when all the
radars show wake returns. For vortex pair descent unaffected by stratification, we
find ∆z = 77 m. The parameter determining the effect of stratification on vortex pair
descent is N∗0 = 2πNb2

0/Γ (Spalart 1996). Its value is 0.79 and using Spalart’s (1996)
figures 4, 6 and 10(a), we concluded that stratification would shorten descent from
77 m to about 65 m. Thus we obtained ∆εr = −8.4× 10−7. As we will see, RCS ∝ ∆ε2r
so a factor of 2 error in this estimate would affect RCS by 6 dB.

2.2.3. Experimental evidence

Here we discuss facts immediately accessible from experiments that support the
hypothesis that descending atmospheric fluid is responsible for radar scattering in
those experiments. A more quantitative comparison will be presented later in the
paper.

(i) Nespor et al. (1994, p. 658) noted that RCS tended to increase as the wake
dropped into the lower beams. They interpreted this to mean growth of the turbulent
region (so that a greater fraction of the radar pulse volume consisted of turbulence).
However, the observations are more simply explained by the increasing refractive
index contrast between the oval and the ambient as the oval descends.

(ii) Gilson notes that RCS decreases with altitude. This is consistent with the
decrease in the Brünt–Väisälä frequency with altitude.

(iii) From the radar returns, Gilson (1992) was able to infer the length of the wake



132 K. Shariff and A. Wray

along the radar beam (his figure 7 and data files he gave us). For run 15 the values
generally lie in the range 80–120 m at 66 s (with one measurement of 150 m). These
values are similar to the major axis of the oval (112 m).

(iv) At later times, however, the picture is not so simple. If the oval continued to
descend at the same rate between 66 s and 235 s (Gilson’s next measurement), we
would expect RCS to increase by about 11 dB due to increasing density contrast
between the oval and the surroundings. The measured raw RCS remains unchanged,
however. This may be because stratification impedes descent of the oval. In particular,
we have N∗0 = 0.79 for the experiment and figures 4, 6, 7 and 10 in Spalart (1996)
show that between N∗0 = 0.5 and N∗0 = 1, there is a qualitative change in the descent
of the vortices at 235 s (Spalart’s t = 5.08). Whereas for the smaller value of N∗0 ,
the descent is only slightly impeded, for N∗0 = 1 the vortices bounce upward for
a rectangular wing (Spalart’s figure 4). For elliptical wing loading, the vortex pair
separation decreases and it crashes through the oval leaving it considerably distorted
near the altitude of formation. Such behaviour may account for the lack of increase in
RCS. Furthermore, at about 235 s the wake lengths reported in the data file increase
to 150–400 m. This may be due to turbulence in the boundary of the oval (§ 6.2.1).

In conclusion, it is clear that stratification is playing a role in the experiments and
we believe that the simple picture of a descending oval provides a good model on
which to base an initial quantitative study.

The next two sections present the scattering analysis. The physically motivated
reader may safely skip to the results (§ 5).

3. Born scattering analysis
3.1. General formulation

Consider time-harmonic electric and magnetic fields

Ē(x, t) = Re[E(x) e−iωt], H̄(x, t) = Re[H(x) e−iωt], (3.1)

where E and H are complex. Later we will treat pulses by performing a Fourier
synthesis of the results of the time-harmonic analysis.

The starting point to the solution of the scattering problem is the integral equation
(Ishimaru 1978, vol. 1, p. 16):

Πs(x) =

∫
V

∆εr(x
′)E(x′)G(x, x′) dx′, (3.2)

∆εr(x
′) ≡ ε(x′)

ε0
− 1. (3.3)

Here

G(x, x′) =
eik∆

4π∆
, ∆ ≡ |x− x′|, (3.4)

is the free-space Green’s function and Πs is the Hertz vector of the scattered field
such that

E s = ∇× ∇×Πs, H s = −iωε0∇×Πs. (3.5)

The integral in (3.2) has a simple interpretation: each point scatters a spherical wave
(represented by G) whose Hertz vector has the same phase and direction as the
local electric field but with amplitude diminished by ∆εr. The problem is an integral



Radar reflectivity of aircraft vortex wakes 133

equation because each scattered wave changes the electric field, is re-scattered and so
on ad infinitum.

To calculate E s and H s from Πs requires evaluating curls (with respect to x) of the
integrand in (3.2). We list them here for completeness. Defining C ≡ ∆εr(x

′)E(x′), the
vector in the integrand which is constant with respect to x, we obtain

∇× CG = ∇G× C , (3.6)

∇× ∇× CG = ∇× (∇G× C ) = (C · ∇)∇G− C∇2G. (3.7)

Equations (3.6) and (3.7) involve first and second derivatives of G:

∂G

∂xi
=

1

4π

eik∆

∆2
xi(ik − 1/∆), (3.8)

∂2G

∂xi∂xj
=

1

4π

eik∆

∆4
[(∆2δij + ikxixj∆− 2xixj)(ik − 1/∆) + xixj/∆], (3.9)

where δij is the Kronecker delta.

3.2. The Born approximation

The integrand in (3.2) contains the total electric field (incident + scattered) which
is in general unknown; however, since in the present case ∆εr = O(10−6) one can
invoke the Born approximation that it can be set equal to the incident field. This
corresponds to retaining only the first of multiple scatterings, or mathematically, to
keeping only the first term in a Neumann series solution to the integral equation. The
Born approximation is valid when the scattered electric field is much smaller than the
incident field in the region of the target. Equations (3.2), (3.7) and (3.9) imply that
the following three conditions have to be satisfied for this to be true:

∆εr{1, kLs, (kLs)
2} � 1. (3.10)

It should be noted that Ishimaru (1978) gives only the second condition, perhaps
because he was thinking of scattering by particles smaller than a wavelength. In that
case kLs < 1 and the second condition is the more stringent one.

3.3. Calculation of the radar cross-section for the time-harmonic analysis

The definition of radar cross-section given earlier (1.2) is

RCS = 4πR2
r

time-averaged power density at the receiver

P̄i,max

. (3.11)

The time-averaged received power density vector is

S s(x) = 1
2
Re{E s(x)×H s

∗(x)}, (3.12)

where Re denotes the real part. The numerator in (3.11) was evaluated as |S s(x)| and
(as a check) S s(x) · ô where ô is a unit vector (defined in (3.21) below) from the target
to the receiver. Differences between the two evaluations were very slight.

Appendix A, §A.1 shows that the denominator in (1.2) is simply (1/2)cε0.

3.4. Coordinate systems

We choose the coordinate system of x and x′ in the integral (3.2) to be located on the
axis of the target as shown in figure 2. In particular, the origin of the coordinate system
is chosen so that the beam centreline intersects the (x, y)-plane at (x = 0, y = y0), y0

being the beam pointing error.
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z (middle finger)

x (first finger)

y (thumb)

Figure 2. Wake coordinate system. Use the indicated fingers of the left hand to follow the
transformations (3.13)–(3.15).

Appendix A gives the electric field in the incident beam using coordinates centred
on the antenna aperture. Hence we need to transform target coordinates (x, y, z) to
aperture coordinates (x∗, y∗, z∗).

Imagine that the transmitter is looking at the wake from the same side as the reader
is looking at figure 2. This figure shows which fingers of the left hand the reader may
employ to visualize the transformations. The reader’s palm will eventually become the
plane of the aperture, the middle finger being the direction of propagation, and the
first finger the direction of polarization. The first transformation turns z (the middle
finger) away from the reader so that it can eventually become the beam axis. The
next transformation shifts the origin to (x = 0, y = y0) to ensure that the beam axis
intersects the (x, y)-plane where we want it. The resulting coordinates are therefore x(1)

y(1)

z(1)

 =

 −x
y − y0

−z

 . (3.13)

Next, rotate the coordinate system counter-clockwise by angle βt ∈ [0, 2π] around the
x(1)-axis (first finger). Thus βt is an elevation angle to the target. Follow this by a
counter-clockwise αt ∈ [−π/2, π/2] rotation about the current y-axis (thumb). Next,
translate the coordinate system in the negative z-direction by the range Rt from the
transmitter to the point x = (0, y0, 0) on the target. These three transformations give x(2)

y(2)

z(2)

 =

 cos αt 0 − sin αt

0 1 0
sin αt 0 cos αt

 1 0 0
0 cos βt − sin βt

0 sin βt cos βt

 −x
y − y0

−z

+

 0
0
Rt

 .

(3.14)

Finally, to orient the polarization vector along the x∗-axis (first finger), the coordinate
system is rotated by angle γ about the z(2)-axis (about the middle finger, counter-
clockwise looking into the palm): x∗

y∗
z∗

 =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 x(2)

y(2)

z(2)

 . (3.15)
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Putting all the transformations together gives

x∗ = cos γ{−x cos αt − sin αt[(y − y0) sin βt − z cos βt]}
+ sin γ{(y − y0) cos βt + z sin βt}, (3.16)

y∗ = cos γ{(y − y0) cos βt + z sin βt}
− sin γ{−x cos αt − sin αt[−z cos βt + (y − y0) sin βt]}, (3.17)

z∗ = Rt − x sin αt + cos αt[−z cos βt + (y − y0) sin βt]. (3.18)

The incident electric field is in the x̂∗-direction and to obtain its (x, y, z) components
for use in the integral (3.2) we note that

x̂∗ = − cos αt cos γx̂+ (cos βt sin γ − cos γ sin αt sin βt)ŷ

+(sin βt sin γ + cos γ sin αt cos βt)ẑ, (3.19)

from (3.16). Like the ‘incident direction’ î from the transmitter to the point (0, y0, 0)

î = ẑ∗ = − sin αtx̂+ cos αt sin βtŷ − cos αt cos βtẑ, (3.20)

we define the ‘observer direction’ ô from the point (0, y0, 0) to the receiver in a similar
way using angles αr and βr and reversing the sign of the vector:

ô = sin αrx̂− cos αr sin βrŷ + cos αr cos βrẑ. (3.21)

The location of the receiver is then:

xr = y0ŷ + Rrô. (3.22)

3.5. Numerical integration procedure

Two methods were used to evaluate the integral (3.2) which gives the scattered field.
Method A: This is the more general but less efficient of the two methods. It

uses Simpson’s rule in cylindrical coordinates (x, r, φ). The integral over the infinite
direction x was truncated at |x| = 3ub, where ub = Rt sin θb is the characteristic beam
radius at the target. In the radial direction, the integrals were truncated at r = 0.5b0

when the vortex was the target. When the oval is the target, the integrand is zero
for r > a. The number of quadrature points in each direction was determined from
the input parameter Nql , which is the number of quadrature intervals desired per
characteristic length l of fluctuations of the integrand. The characteristic length in
each direction was chosen as

lx = min(λ, ub), lφ = min(λ, ub), lr = min(λ, ub, δr), (3.23)

where

δr =

{
δε if the vortex is the target,
1
2
a if the oval is the target.

(3.24)

Here δε is the radius where ∆εr(r) reaches half its peak value. If the length of an
integration is L then Nl = int(L/l) + 1 characteristic lengths cover the integration
length and the number of quadrature intervals was determined as Nq = Nql max(3, Nl),
the purpose of the max being to ensure a minimum number of quadrature points. For
each calculation of radar cross-section presented for this method we used Nql = 8 and
accepted the result if Nql = 16 showed no perceptible change in radar cross-section.
Computational cost prevented use of this method above f ≈ 0.16 GHz.

Method B: This method was developed to efficiently calculate the radar cross-
section for the oval at the relatively high frequencies of the test at Kwajalein. The



136 K. Shariff and A. Wray

implementation is currently specialized to backscattering at normal incidence for the
oval.

Each of the six integrals needed to evaluate the scattered E and H fields is of the
form

I =

∫
A(x, y, z) eiφ(x,y,z) dx dy dz, (3.25)

where z is the direction along the beam axis and the cross-beam coordinates are (x, y).
The basic idea of the method is to divide the integration interval in a given direction
(say ζ) into many sub-intervals and to approximate the amplitude and phase in each
sub-interval as a linear function of ζ:

I =

∫ ζ2

ζ1

A(ζ) eiφ(ζ) dζ ≈ ∆ζ

∫ 1

0

(A(ζ1) + ξ∆A) ei(φ(ζ1)+ξ∆φ) dξ, (3.26)

where

∆A ≡ A(ζ2)− A(ζ1), ∆φ ≡ φ(ζ2)− φ(ζ1). (3.27)

The integral in each sub-interval can then be obtained analytically:

I ≈ − i

∆φ
∆ζ

{
−
[
A(ζ1) +

i

∆φ
∆A

]
eiφ(ζ1) +

[
A(ζ2) +

i

∆φ
∆A

]
eiφ(ζ2)

}
. (3.28)

The integral along the beam (z-direction) was performed first and tests revealed that
one sub-interval was sufficient to obtain an accurate integral. This is due to uniformity
of the dielectric constant and slow variation of the strength of the incident beam. A
model with a slice of entrained ambient fluid will also be treated (figure 6). For this
case, one interval along the beam for each of the two regions was used. For each
interval, the resulting integral has the form (3.28) with ζ replaced by z. Now the two
terms in the result (3.28), when considered as functions of the remaining coordinates,
are again in the basic form (3.25) with amplitudes and phases a function of x and
y. Hence, the same method can be applied successively in these directions. In these
directions, hundreds of sub-intervals were required for convergence.

4. Approximate scattering analysis
4.1. General formulation

To obtain analytical insight into the numerical results and as a check on the numerics,
it is useful to have closed-form expressions which provide the radar cross-section in
certain limits. Such expressions are developed in this section and, later in the paper,
their predictions will be compared with the formulation of the previous section.

Four assumptions will be invoked. First is the far-field assumption which holds
when (1.6) is satisfied. In this case

G =
eikRr

4πRr

e−ikx′·ô, (4.1)

and the scattered electric field implied by (3.2) is given by (see Ishimaru 1978, vol. 1,
p. 17)

E s(x) = f(ô, î ) eikRr/Rr, (4.2)

f(ô, î ) ≡ k2

4π

∫
V

{−ô× [ô× E(x′)]}∆εr(x′) e−ikx′·ô dx′. (4.3)
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The second assumption is the Born approximation of the previous section: E(x′) −→
E i(x

′) in the integrand.
The third approximation replaces the conical incident beam by a cylindrical beam

in the vicinity of the target as explained in Appendix A, §A.2. The incident electric
field then has the form

E i(x) = x̂∗F(u; σ) eikz∗ , (4.4)

where

u ≡
(
x∗2 + y∗2

)1/2

(4.5)

is the normal distance from the beam axis. Substituting for z∗ from (3.18) and using
(3.20), the incident electric field takes the form

E i(x) = x̂∗F(u; σ) eikx·î eikΦ, (4.6)

where

Φ ≡ Rt − y0 cos αt sin βt. (4.7)

Substituting (4.6) into (4.3) gives

f(ô, î ) =
sk2eikΦ

4π

∫
V

∆εr(x
′)F(u; σ) eikx′·(î−ô) dx′, (4.8)

where

s ≡ −ô× [ô× x̂∗]. (4.9)

Let us keep ready at hand the following geometric quantity which appears in (4.8):

x · (î − ô) = −Px− Qy − Sz, (4.10)

where

P ≡ sin αt + sin αr, (4.11)

Q ≡ − cos αt sin βt − cos αr sin βr, (4.12)

S ≡ cos αt cos βt + cos αr cos βr. (4.13)

Two types of cylindrical beams, justified in Appendix A, will be considered. The
first is Gaussian:

F(u; σ) = e−u
2/σ2

, (4.14)

and corresponds to a Gaussian illumination of the transmitting aperture. The second
is produced by a uniformly illuminated circular aperture:

F(u; σ) =
2J1(u/σ)

(u/σ)
. (4.15)

Using (3.16) we have

u2 = x∗2 + y∗2 = Ax2 + Bx(y − y0) + Cxz + D(y − y0)
2 + E(y − y0)z + Fz2, (4.16)

in which

A = cos2 αt, B = sin 2αt sin βt, C = − cos βt sin 2αt,

D = cos2 βt + sin2 αt sin2 βt, E = cos2 αt sin 2βt, F = cos2 βt sin2 αt + sin2 βt.

}
(4.17)

Keeping all the terms in (4.16) makes the resulting integrals analytically intractable.
Thus we make the fourth approximation that the beam is much wider than the cross-
sectional (y, z) dimensions of the wake. In the wide beam limit, the beam amplitude
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varies only along the axis of the wake and is constant within each cross-section of
the wake. Thus setting y = z = 0 in (4.16) we obtain:

u2 ≈ x∗2 + y∗2 = Ax2 − Bxy0 + Dy2
0 . (4.18)

To calculate the scattered power flux we need the scattered magnetic field corre-
sponding to (4.2). Using the Maxwell equation

H s =
1

iωµ0

∇× E s, (4.19)

we obtain to leading order in the far field

H∗s =
k

Rrωµ0

e−ikRr (ô× f)∗. (4.20)

Substituting (4.20) into (3.12) and noting that according to (4.8) f is of the form
f = sC where s is a real vector perpendicular to ô and C is a complex number, we
conclude that

S s(x) =
k

2R2
rωµ0

|f|2ô. (4.21)

The incident flux in the definition of the radar cross-section (1.2) is taken to be that
for the original conical beam, namely, cε0/2. Hence (1.2) gives simply

RCS = 4π|f|2. (4.22)

4.2. Scattering off a Fourier mode

Begin by Fourier decomposing the dielectric constant in the axial and azimuthal
directions:

∆εr(x) =
∑
kx,m

∆ε̂r(r; kx, m) ei(kxx+mφ). (4.23)

To justify the sum in kx instead of an integral, assume that there is a periodicity
length Lx and then let Lx →∞.

Substituting the Fourier expansion (4.23) and the Gaussian incident beam (4.14)
into (4.8) gives

f =
∑
kx,m

f̂(kx, m), (4.24)

where

f̂(kx, m) =
sk2eikΦ

4π
Ix

∫ ∞
0

rdr∆ε̂r(r; kx, m)Iφ(r), (4.25)

and Iφ and Ix are the following integrals (for a Gaussian beam):

Iφ =

∫ 2π

0

dφ e−ikr(S cosφ+Q sinφ) eimφ (4.26)

= 2eimφ1 imπJm(−k̃r), (4.27)

Ix = e−Dy
2
0/σ

2

∫ ∞
−∞

dx exp(−(Ax2 − Bxy0)/σ
2) exp(−ix(kP − kx)) (4.28)

=
π1/2σ

A1/2
exp((y0/σ)2[B2/(4A)− D]) exp(−ik′By0/(2A)) exp(−(k′σ)2/(4A)).

(4.29)
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The integral with respect to φ was obtained by letting kQ = k̃ sinφ1, kS = k̃ cosφ1,
so that k̃ = k(S 2 + Q2)1/2 and using an integral tabulated in Gradshteyn & Ryzhik
(1980, p. 482).

The integral Ix was obtained by letting k′ = kP − kx and completing the square
on the exponent. Note that Ix has a Gaussian cut-off factor if the beam is off-
centre: exp{[B2/(4A)− D](y0/σ)2}, where the argument can be shown to be negative
definite. This corresponds to the ‘blip’ as the radar scans across the vortex. We shall
henceforth set y0 = 0. Ix also has a cut-off due to finite beam size as represented by the
factor exp(−(k′σ)2/(4A)) (k′ ≡ kP − kx). It implies that the contribution to the radar
cross-section versus frequency by a fluctuation in refractive index at wavenumber
kx is a ‘bump’ centred at radio wavenumber k = kx/P which has a half-width of
δk = 2A1/2/(Pσ). This result is analogous to the Bragg condition of Tatarski (1961).
The cut-off is eliminated when it has infinite width, i.e. when P ≡ sin αr + sin αt = 0.
This holds if the receiver is at the direction of specular reflection (αr = −αt). Note
that for backscattering (αr = αt), perfectly normal incidence (αr = αt = 0) is required
to eliminate the cut-off. The cut-off is also eliminated if αr = αt±π and it corresponds
to the receiver being on the other side of the transmitter relative to the wake axis.

For the Bessel function beam the analysis is very similar; only the integral Ix is
different:

Ix =

∫ ∞
−∞

dx
2J1(u/σ)

u/σ
e−ik′x =

4σ

A

{
[1− (k′σ)2/A]1/2 0 6 k′σ/A1/2 < 1,
0 k′σ/A1/2 > 1,

(4.30)

where u = (Ax2)1/2. In deriving (4.30) the beam offset y0 was set to zero for analytical
tractability. Thus one sees that the Gaussian cut-off for the Gaussian beam has been
replaced by a sharp cut-off and the same conditions hold for the elimination of this
cut-off.

4.3. Approximate scattering by mechanisms A and B

To obtain RCS = 4π|f|2 for mechanisms A and B set kx = m = 0. Then the only
quantity that distinguishes the two mechanisms is the radial integral Ir in (4.25) which
we now seek to obtain.

4.3.1. Mechanism A: radial density gradient in a vortex core

For the purpose of the approximate analysis, the numerically obtained variations
of dielectric constant shown in figure 1 were fit to the following form:

∆εr(r) =
∆ε0r

(η/ηε)2 + 1
. (4.31)

Here η ≡ r/b0 and the parameter ηε was chosen to make the fit agree with the actual
curves at the half-amplitude point. The resulting fits were excellent through most of
the core but for very large radii the actual decay was faster than represented by the
fit.

For the fit (4.31) the radial integral in (4.25) is

Ir = (ηεb0)
2∆ε0r

∫ ∞
0

rdr J0(k̃r)

r2 + (b0ηε)2
= (ηεb0)

2∆ε0rK0(k̃b0ηε), (4.32)

using Gradshteyn & Ryzhik (1980, 6.532.4). Owing to the exponential decay of K0,
the radial integral introduces a cut-off due to finite vortex core radius. The reader
may wish to see this cut-off plotted in figure 3 in § 5.
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This cut-off is eliminated as k̃ = k(S2 + Q2)1/2 → 0. This limit is realized in three
cases: (i) when incident and scattering directions are along the vortex; (ii) when
αt = αr and βr = βt + π; (iii) for forward scattering (αr = −αt, βr = βt + π); with this
condition on αr and αt, the beamwidth cut-off in the x-integral is also eliminated and
therefore the forward direction has the greatest scattering.

It should be noted that Ir has a log divergence as k̃ → 0. This is a manifestation
of the algebraic decay of the ∆εr(r) fit for large r. With a better representation of the
large-r behaviour, the cut-off is eliminated without a singularity.

4.3.2. Mechanism B: oval surrounding the vortex pair

As mentioned in § 2.2.1 the oval can be approximated as a cylinder of radius a with
a constant refractive index inside the cylinder and zero outside. In this case the radial
integral in (4.25) is

∆ε0r

∫ a

0

r dr J0(k̃r) =
a∆ε0r
k̃
J1(k̃a). (4.33)

5. Numerical results
5.1. Mechanism A: radial density gradient in a vortex

Here we consider the RCS due to a density gradient in a vortex arising from
a balance of radial pressure gradient and centrifugal forces. The corresponding
variation of dielectric constant was plotted in figure 1. Since the effect of humidity
on ∆εr(r) was seen to be weak, attention is restricted to a dry atmosphere. We used
the velocity profile of Spalart due to its better representation of the inner core. Then
the appropriate curve in figure 1 is the dotted one without symbols. The results of the
Born analysis were obtained using method A (§ 3.5).

A Gaussian beam having an e−1 half-width of θb = 1.5◦, a target range of 1 km
and polarization angle of γ = 0 were chosen for illustrative purposes (the value of γ
was found to be immaterial for backscattering).

Figure 3(a) plots the radar cross-section for various incident and scattering direc-
tions: the two cases of most practical relevance are backscattering at normal (– – – –,◦)
and off-normal (— ·—,�) incidence. The results of the approximate analysis (lines)
agree quite well with those of the Born analysis (symbols) even though the far-
field parameter becomes O(1) (figure 3b). The general features of the results are in
accord with the discussion in § 4.3.1: one observes (i) a low-frequency cut-off for
backscattering away from normal incidence (chain-dashed), (ii) a higher frequency
cut-off at the scale of the vortex for backscattering at normal incidence (dashed)
and specular reflection (not shown for clarity), (iii) elimination of both cut-offs for
forward scattering (4). Finally, one observes (long-dashed, O) that some increase in
frequency and reflectivity can be obtained even somewhat away from the forward
direction, in particular when the transmitter and receiver are both looking up at the
vortex with an elevation of 30◦.

The limit frequency for the Born approximation is obtained by setting Ls =
max(ub, δε) in (3.10). The result is f � 0.74 GHz. This fails to be satisfied for the
rightmost portion of the figure. From the Mie result for scattering by a sphere we
expect that if the Born approximation were not made, the main difference would be
that the forward scattering result, which increases linearly, would begin to oscillate
and decrease in average slope as the weak scattering approximation began to be
violated. We expect that the other results would continue to hold.
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Figure 3. (a) Radar cross-section for a vortex due to a Gaussian beam at a range of 1 km. Unless
indicated the results are for a heavy aircraft. The symbols correspond to the Born analysis and lines
to the approximate analysis. — ·—,�, backscattering away from normal incidence (αt = αr = 30◦,
βt = βr = 0); – – – –,◦, backscattering at normal incidence (αt = αr = 0◦, βt = βr = 0); – – –,O,
nearly forward scattering with 60◦ offset in β (αt = −αr = 30◦, βt = 0, βr = 120◦); 4, forward
scattering (αt = −αr = 30◦, βt = 0, βr = 180◦); ——,•, DC-8, backscattering at normal incidence.
(b) Far-field parameter εff for (a).

To emphasize differences between the Born and approximate analysis the range was
varied beyond 1 km. For a point target the radar cross-section should be independent
of range but not so for an extended target. For very short ranges the vortex will fill
the beam and we expect the RCS to increase quadratically with range. When the
range is large enough that the vortex spans the beam in only one direction, we expect
the radar cross-section to increase linearly with range. To verify this, the frequency
was kept fixed near the peak for normal-incidence backscattering (f = 5 × 107 Hz)
and the range was varied (see circles in figure 4a). It is interesting to note that the
dependence on range according to the approximate analysis (dashed line) is quadratic,
that is, as if the target were always beam filling in both directions. Figure 4(b) shows
that the approximate analysis begins to show deviations from the Born analysis when
the far-field parameter becomes greater than unity.
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Figure 4. (a) Range dependence of vortex RCS for backscattering at normal incidence
(f = 5 × 107 Hz). ◦, Born analysis; – – – –, approximate analysis; ——, slope lines. (b) Far-field
parameter, εff for (a).

5.2. Mechanism B: scattering by the oval

This subsection has two parts. In the first, RCS of the oval is calculated for the
parameters of the Kwajalein experiment and the results compared with measurements.
In the second the range and frequency dependence of the RCS and errors introduced
by various assumptions in the approximate analysis are studied.

5.2.1. Comparison with experiment (Gilson 1992)

We expect that at the high frequencies (> 50 MHz) of the Kwajalein experiment, the
vortices themselves are ineffectual scatterers. Indeed, for the VHF radar at Kwajalein
we calculated RCS = −86.8 for a vortex of a heavy aircraft in approach configuration
at the experimental value of the range (the RCS for the cruising C-5A would be even
lower due to its smaller circulation). This is 17 dB less than the measured values and
therefore in attempting to predict the experimentally measured RCS we focus entirely
on mechanism B.
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∆θ θb f0 flim Waveform Pulse width, FM spread,
Band (mrad) (deg.) (GHz) (GHz) ID τ (µs) ∆fFM (MHz)

VHF 48.8 2.37 0.162 0.084 V.25C 0.25 0
UHF 19.2 0.934 0.422 0.21 U.1C 0.10 0

L 10.6 0.516 1.32 0.39 L2 2 20
S 5.2 0.253 2.95 0.79 S3 3 60
C 5.2 0.253 5.67 0.79 NB 10.2 6
Ka 0.76 0.037 35.0 1.0 N2 50 12

Table 2. Radar parameters for the Kwajalein experiment. ∆θ: half-power beamwidth; θb: e−1

half-width of a corresponding Gaussian beam; f0: carrier frequency; flim: limit frequency for
validity of the Born approximation.

Experimental procedures and parameters (Gilson 1992; Roth et al. 1989) are now
discussed:

(i) As discussed in § 2.2.2 we chose to simulate run 15 of the experiment at about
66 s after aircraft passage, the first instant when all radars in the experiment have
detected the wake. The range of the target was 15 km and the radar was pointed
normal to the wake.

(ii) Gilson (1992) plots RCS divided by a certain length and it is not possible to
infer the raw RCS from his report. Fortunately, Dr Gilson kindly provided us with
raw data.

(iii) All the radars in the experiment transmit a right circularly polarized wave and
receive both right and left circularly polarized waves. So far our analysis has been for
linear polarization. However, a circularly polarized wave is simply a superposition of
two linearly polarized waves:

E(x) = E(x)(ê1 ± iê2), (5.1)

H(x) = H(x)(iê2 ± ê1), (5.2)

where ê1 ⊥ ê2 and the choice of plus signs gives a right circularly polarized wave and
minus signs a left one. Further, note that a circularly polarized wave has simply twice
the power flux of each of its linearly polarized components. If the incident beam
has the form (5.1)–(5.2) then the linearly polarized analysis can be done separately
for each component and the resulting scattered fields added. In this manner, it was
verified from the numerical result that for all the cases presented here, the resulting
scattered wave is also circularly polarized with the same helicity as the incident wave
(the approximate analysis gives the same result). Thus both incident and scattered
powers are doubled compared to the linearly polarized analysis and the RCS is
unchanged.

(iv) The experiment used a pulsed radar whereas our analysis so far has been for a
time-harmonic wave. Appendix B describes the treatment of a pulse and table 2 gives
the characteristics of the pulse waveforms.

Figure 5 shows that the results of the Born analysis (•) and measured (◦) RCS
values have differences of between 2 and 13 dB while the approximate analysis (�)
considerably overpredicts the RCS. We considered the possibility that part of the
error in the Born analysis may be accounted for by the presence of internal structure
within the oval. The first source of this to come into play (for a laminar oval) is that
the lower stagnation point on the oval boundary is kinematically unstable. Any slight
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Figure 5. Comparison with experiment: ◦, experimental data at about 66 s after passage of the
airplane; •, Born analysis for oval; N, Born analysis for oval with a slice of entrained fluid.
�, approximate analysis for oval.
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Figure 6. Model for the oval with a slice of entrained ambient fluid.

unsteadiness in the flow will cause a sliver of ambient fluid to be entrained into the oval
along its centreplane (Rom-Kedar, Leonard & Wiggins 1990). A corresponding thin
slice of oval fluid will be detrained from the top stagnation point. Both will produce
additional surfaces of reflection. To gauge the importance of this we calculated the
reflectivity of an oval with a slice of ambient fluid (figure 6). Using the elevation angle
for the experiment (β = 5.8) we obtain the N in figure 5. There is an improvement
only at the VHF frequency. This is because the pulses reflected from the slice add to
the two pulses reflected from the outer boundary of the oval as shown in figure 7. For
the other frequency cases, all three reflection pulses remain distinct, causing no change
in the peak RCS. The width of the slice used in this calculation was δent = 0.10a.
A thinner slice (δent = 0.02a) was also tried and it produced small RCS changes
(6 −1.5 dB) compared to the thicker slice. This suggests that the presence of an
internal boundary is more important than its precise form.

The Born analysis gives a rapid cut-off away from normal incidence. On the
other hand, comparing experiments at 45◦ and 90◦ incidence (Gilson’s runs 1 and
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Figure 7. Returned pulse envelope calculated for Gilson’s (1992) VHF case. The abscissa is time
expressed as a range, c(t − Rr/c)/2; the division by 2 converts from round-trip travel distance
between scattering centres to one-way distance. ——, Oval; · · · · · ·, Oval with slice of entrained
ambient fluid.

17, respectively) does not reveal significant differences. Moreover, the experiments
searched for a flash at normal incidence and found none. We estimate in § 6.2 that the
boundary of the oval is very likely to be turbulent and suggest that this may account
for the lack of directional dependence in the experiment. There we will also estimate
the attenuation due to the turbulent boundary and show that it is consistent with the
experimental observation of a cut-off somewhere between 5.67 GHz and 35 GHz.

How valid is use of the Born approximation for the Kwajalein experiment? An
upper frequency limit flim for validity of the Born approximation was defined using
(3.10) by replacing the inequality with an equality and using

Ls = max(Rt sin θb, a) (5.3)

for the characteristic size of the scattering region. Table 2 provides values of flim for
each experimental case. They show that in the experiment frequencies are between
factors of 2 and 6 higher than flim. Therefore in the future it would be worthwhile
to perform a scattering analysis that does not invoke the Born approximation. A
possible approach for such an analysis might be geometric optics which is valid for
large frequencies (ka� 1) but arbitrary ∆εr.

5.2.2. Test of various approximations

The goal of this subsection is to present a study of the errors introduced by various
assumptions in the approximate analysis. This is done by introducing (in various
combinations) assumptions of the approximate analysis into the computer code
(method B) for the Born analysis. Let us recall that starting from the Born analysis,
the approximate analysis is obtained by: (i) replacing the Green’s function with its
far-field version; (ii) replacing the conical incident beam with a cylindrical beam;
(iii) assuming that the beam is much wider than the size of the oval’s cross-section.

Range dependence. In the first test, the parameters chosen were those of the Kwaja-
lein S-band test and the range was varied. The results, which are shown figure 8,
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Figure 8. Range dependence of oval RCS for various approximations. ——, Born analysis; · · · · · ·,
far-field Green’s function only; – – – –, wide cylindrical beam only; — - —, both far-field and wide
cylindrical beam; — — —, wide cylindrical beam approximation but without assumption (d ) in
Appendix A, §A.2. Reference lines for linear and quadratic dependence are also shown.

are for a time-harmonic wave. The Born analysis (solid line) gives R2 behaviour for
small ranges, characteristic of a beam filling target, followed by the linear behaviour
characteristic of a target that fills the beam in only one direction. Replacing the
Green’s function with the far-field G gives the dotted line, which overpredicts the
RCS by a constant number of dB as the range increases. Using the full Green’s
function but replacing the conical beam with a cylindrical beam and invoking the
wide beam approximation gives a result (dashed curve) that agrees surprisingly well
with the far-field G result for large ranges. This is partially understandable since one
of the cylindrical beam approximations also requires smallness of a far-field parameter
in order to be valid; this is approximation (d ) in Appendix A, §A.2 which replaces
spherical with plane wavefronts. If we drop assumption (d ), then the result (long-
dashed) agrees with the Born analysis as the range increases. When both the far-field
G and cylindrical beam are used, the result (chain-dashed) gives an R2 behaviour
throughout which is erroneous for large R. This curve agrees (as it should) with the
analytical result of the approximate analysis (not shown for clarity) and thus provides
a check on the accuracy of the quadratures for method B.

Frequency dependence. Figure 9 shows the frequency dependence for a time-
harmonic incident wave. Besides the frequency, the rest of the parameters are those
for the Kwajalein VHF case. The Born analysis (solid line) gives a flat frequency de-
pendence. The curve is punctuated by regular oscillations having a width ∆f = c/(4a)
due to interference between the two effective scattering centres of the target (see
Appendix B); the fluctuations appear irregular due to a coarse number of plot points.
Using the far-field G produces the dotted curve which only slightly over-predicts the
RCS. The curve for the wide cylindrical beam (full G) is very close to the dotted curve
and is not shown for clarity. However, when both far-field G and wide cylindrical
beam are invoked (to yield the approximate analysis) the result (long-dashed curve)
has an erroneous RCS ∝ k behaviour.
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Figure 9. Frequency dependence of oval RCS. ——, Born analysis, normal incidence; — — —,
approximate analysis, normal incidence; · · · · · ·, far-field G, normal incidence; — - —, Born analysis,
15◦ off-normal incidence; – – – –, approximate analysis, 15◦ off-normal incidence.

6. Qualitative assessment of effects not present in the two-dimensional
picture

In this section various phenomena not included in the two-dimensional picture are
discussed and their qualitative effect on radar cross-section suggested. Most of the
phenomena are well-known. Two new aspects are: (i) a study of the effect of rotating
shear on the elliptic flow instability; (ii) an estimate indicating that the baroclinically
generated shear layer at the oval boundary is turbulent.

6.1. Phenomena affecting mechanism A

6.1.1. Core waviness

Vortex core waviness in the form of Crow (1970) and Widnall (Thomas & Auerbach
1994; Leweke & Williamson 1998) instabilities may arise from small disturbances or
from forcing by atmospheric turbulence (Spalart & Wray 1996; Risso, Corjon &
Stoessel 1997). Both instabilities have wavelengths so large that they are irrelevant
as a mechanism for scattering above about 20 MHz. However, they would cause the
axial mean of the refractive index to be smeared out in r. A beam that is wider
than the wavelength of the Crow instability (≈ 400 m for a heavy airplane) would be
sensitive to this axial mean and therefore reflectivity would diminish in strength and
shift to frequencies lower than 50 MHz. Tighter beams (larger antenna arrays) would
be required to mitigate this effect.

6.1.2. Turbulence suppression within vortex cores

This subsection justifies the neglect of turbulence within the vortex cores. Rotation
has profound effects on turbulence which most turbulence models are unable to
capture. First, the rate of energy transfer and hence dissipation is reduced (e.g.
Bardina, Ferziger & Rogallo 1985) because rotation scrambles nonlinear interactions.
A more important effect is the drastic alteration of turbulence production. There are
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three mean velocity gradients which can act as turbulence production mechanisms
within the vortex:

(i) There is a jet/wake flow along the vortex axis but this decays quite rapidly
behind the wing.

(ii) The circumferential velocity around the axis leads to shearing of fluid elements
as they rotate. The Bradshaw criterion for stability of shear in a rotating frame when
applied to a vortex with single-sign vorticity predicts that the flow is locally stable at
each r (e.g. LeBlanc & Cambon 1997). Indeed Qin (1998) found via direct numerical
simulation that there is negative production of turbulent kinetic energy within vortex
cores.

(iii) Finally, the only remaining mechanism for turbulence production is the strain
induced by one vortex upon the other. It is responsible for the Crow and Widnall
instabilities discussed earlier and the ultra-short-wave elliptic flow instability (e.g.
Landman & Saffman 1987). The question arises of whether the elliptic instability can
be excited in the presence of the stabilizing effect of rotating shear. To address this
question without undertaking a full stability analysis of a vortex pair, we perform an
analysis which accounts for only the local velocity gradient. This is valid for waves
much smaller than the vortex core size. The local velocity gradient (following a fluid
element in an inertial frame) has three parts: rotation, strain induced by the other
vortex and rotating shear. The first two alone lead to the elliptic instability. To this
we add shear (of rate S) rotating at angular velocity Ω. The velocity gradient matrix
then becomes

A =

 0 −γ̄ − e 0
γ̄ − e 0 0

0 0 0

+ S

 − sinΩt cosΩt cos2 Ωt 0

− sin2 Ωt sinΩt cosΩt 0
0 0 0

 . (6.1)

The value of Ω was chosen to be the rate of rotation of fluid particles in the elliptic
flow, i.e. Ω = (γ̄2 − ε2)1/2. Had Ω been chosen to be the rate of rotation, γ̄, of fluid
particles without the strain then the shear axes would move ahead of the axes of a
fluid element which is not physical. For an axisymmetric circumferential flow uθ(r)
we have

γ̄ =
uθ

r
and S = −

(
∂uθ

∂r
− uθ

r

)
. (6.2)

The strain rate due to the other member of a vortex pair is

e = 2× Γ

2πb2
0

, (6.3)

where the induced strain has been multiplied by 2 in order that the growth rate and
ellipticity of the elliptic streamline flow match that of a vortex of uniform vorticity
surrounded by potential flow. The evolution of a single mode was considered at
several values of r/δL inside a Lamb–Oseen vortex with a value of δL/b0 = 0.088
given by Rennich (1997) for a large aircraft in approach. The modes investigated
were those known to be the most unstable for the elliptic streamline flow. These
modes have wavevector lying in a cone at 60◦ relative to the vortex axis. Within this
cone the initial azimuthal angle ϕ is free. Figure 10 shows the amplification factor
of the velocity perturbation during the time that the vortex pair descends five vortex
spacings. The different curves are for different locations, r/δ, within the core. At the
centre of the core (chain dashed line) there is no shear and the elliptic instability
is active for all ϕ. As one moves outward, the shear stabilizes all modes except
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Figure 10. Amplification factor of disturbances at various locations in a Lamb–Oseen vortex
subject to strain by another vortex. — ·—, r/δL = 0.0; · · · · · ·, r/δL = 0.01; – – – –, r/δL = 0.10;
——, r/δL = 0.20; — — —, r/δL = 0.30.

those located in a thin band near ϕ = 90◦. This wavevector direction corresponds to
wavefronts that are initially parallel to the shear flow and continue to rotate with it
and therefore are never deformed by it. By r/δ = 0.3 (long-dashed curve) the growth
of even these waves is suppressed by the shear. We thus conclude that roughly only
the inner 20% of the vortex core, or a diameter of 170 cm for a large airplane, is
capable of supporting an elliptic instability, and even this produces amplification
factors that are not significant.

6.2. Phenomena affecting mechanism B

6.2.1. Turbulence within the boundary of the oval

In the presence of stratification, baroclinic torque generates a shear layer at the
boundary of the oval (Spalart 1996). Can this shear layer become turbulent? We
attempt to answer this by making conservative estimates for growth rates of Kelvin–
Helmholtz (KH) and centrifugal instabilities. The turbulent wing boundary layer,
part of which ends up on the oval boundary as it rolls up, could provide the initial
disturbances for these instabilities.

In the present situation the KH instability is complicated by the variation of
vortex sheet strength γ̃(s) and thickness δ(s) along the shear layer and by the fact
that the lower half of the oval boundary experiences an extensional strain (which
is stabilizing) and the upper half a compressive strain (which is destabilizing). To
obtain the distribution of γ̃(s, t) (as a function of position and time) we used the
model of Crow (1974). We expect the thickness δ(s) of the layer to reach a steady
state (dependent only upon position along the layer but not on time) in which
newly diffused vorticity is swept away by the flow. To obtain δ(s) we begin very
near the lower stagnation point where fluid elements are strained but not advected.
Here the thickness of the layer is set by a balance of strain and diffusion. Starting
with this thickness, we then advect a fluid particle along the oval boundary and
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evolve its thickness according to the equations for a strained diffusion layer presented
in Leonard, Rom-Kedar & Wiggins (1987). We note that the appropriate strain
component to use in these equations is the one tangent to the boundary of the oval.

The growth rate of the KH instability in the absence of strain is proportional to
γ̃/δ times a coefficient that increases with Reynolds number (Betchov & Szewczyk
1963). We find that both γ̃(s, t)/δ(s) and the Reynolds number increase monotonically
along the layer from the lower stagnation point. To account for the effect of strain
on the instability in the most conservative (erring towards stability) way possible,
we set the growth rate to be zero in the stabilized lower half of the oval while for
the upper half we used the value of the growth rate of an unstrained layer at the
beginning of the upper half. We thus believe our estimate of growth rate provides
a lower bound. Furthermore, since the KH instability is convective, the total growth
must be computed for only that time interval during which a fluid element remains
on the boundary, i.e. before it enters the wake of the oval. Since we were interested
in turbulence in the boundary of the oval (rather than in the wake of the oval), to
obtain the total growth we multiplied the growth rate by the time that a particle takes
to travel from the beginning of the upper half to the point where the distance to the
symmetry plane is halved.

Numerical values were inserted for the Kwajalein experiment (run 15) 22 s after
passage of the aircraft. We find that there are 13 e-folds of the KH instability in the
26 s it takes for a particle to travel the distance specified in the previous paragraph.
Thus we are confident that at the instant of the first measurement (66 s after aircraft
passage) the upper surface of the oval is turbulent.

Since the vorticity in the oval boundary is of opposite sign to the vortices, we must
also entertain the possibility of centrifugal instability. We estimated the growth rate
to be the square root of the Rayleigh discriminant ΦR where (e.g. Drazin & Reid
1981, p. 69)

ΦR = 2|u|ω/r. (6.4)

Here |u| is the velocity magnitude and ω ≈ γ̃/δ is the vorticity. The corresponding
e-folding time is about 2 s along most of the oval boundary, which also suggests a
turbulent boundary.

If we repeat the above exercise using the parameters of Spalart’s (1996) two-
dimensional simulation (taking his N∗0 = 0.5, non-dimensional time t = 4, and his
Re = 4 × 104) we find that even the inviscid growth rates of the KH instability are
too weak; this is compounded by a very small Reynolds number based on shear layer
strength and thickness. Thus we are not disturbed by the fact that his simulations do
not show an instability.

6.2.2. Scattering due to an oval boundary with arbitrary shape and thickness
distribution

The boundary of the oval will become convoluted due to turbulence. Potential
flow fluctuations arising from vortex core waviness or co-rotation of flap vortices
around wing-tip vortices will also cause the boundary to become stretched and
folded into striations (e.g. Rom-Kedar et al. 1990; Spalart 1996). Owing to thermal
diffusion, at each point along the boundary there will exist a layer across which the
temperature will smoothly change from its ambient to its interior value. For small
layer thickness compared to radius of curvature a locally one-dimensional model is
valid. In particular, if η is the coordinate normal to the surface (positive into the
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interior) then linearizing (2.1) and ignoring humidity:

∆εr(η) = ∆ε0r
1
2
[1 + erf(η/δ)], (6.5)

where the thickness δ will assume a different value on each point on the surface. This
value depends on the local stretch and on interactions with adjacent layers (Leonard
et al. 1987).

To evaluate the effect of a convoluted boundary on scattering consider an infinitesi-
mally thin pencil of rays within the radar beam. The pencil will repeatedly enter and

exit the interior region. We evaluate, using (4.8), the scattering amplitude df(ô, î) due
to one entry and exit. The total scattering amplitude will be a sum over all entry–exit
pairs and an integral over all pencils comprising the radar beam. The result (for
backscattering) is

df =
x̂∗ikeikz∗0

8π
F(x∗, y∗) dx∗ dy∗∆ε0r [exp(−ikL) exp(−(kδi/ sinψi)

2)

− exp(ikL) exp(−(kδo/ sinψo)
2)]. (6.6)

Here (x∗, y∗, z∗) are beam coordinates, z∗ being along the pencil and (x∗, y∗) normal
to the pencil. The magnitude of the incident electric field in the pencil is F(x∗, y∗)
and its direction is along x̂∗. Between the entry and exit, the length of the pencil is L
and its midpoint is at z∗0 . The width of the error function layers at entry and exit are
δi and δo (i.e. delta in and delta out), respectively. Similarly the angle of the pencil
relative to the tangent plane of the layers is ψi and ψo.

Note from (6.6) that the pencil need not have normal incidence to the layers for
reflection to occur. In the case of the two-dimensional targets, normal incidence is
a requirement for backscattering because for every reflected pencil there is another
which cancels it. In the case of the convoluted surface, such a cancellation becomes
unlikely. Stated more positively in terms of the Bragg condition: it is very likely that
there will be a non-zero Fourier mode with wavevector parallel to the beam.

Combining the arguments of the last two subsections, we are led to believe that
turbulence in the boundary of the oval is a plausible explanation for Gilson’s observed
lack of directional dependence.

6.2.3. High-frequency cut-off in RCS

The Kwajalein tests observed reflectivity up to 5.66 GHz but not at 35 GHz. The
frequency where the cut-off in reflectivity occurs is determined by the smallest scale
at which gradients in refractive index exist.

Let us first estimate the cut-off for laminar flow. In § 6.2.1 we described how
the velocity thickness of the oval boundary can be calculated. The calculation of
temperature thickness δT merely replaces viscosity with diffusivity κ. According to
equation (6.6) the cut-off length scale δc will be the minimum value of δdiff/ sinψ
along the boundary and the corresponding attenuation factor is exp(−k2δ2

c ). Using the
elevation angle β = 5.8◦ of the Kwajalein experiment we find δc = 2.78 cm. Figure 11
(dotted line) shows that the corresponding attenuation factor is too strong to account
for the experimental observations.

It is difficult to estimate the smallest scale when the flow is turbulent; however,
we may calculate the next smaller scale in the KH instability. This is the thickness
in the braid region between the KH rollers. First, we calculate the circulation in
the KH vortices as ΓKH = γ̃λKH where λKH is the instability wavelength. From
this the strain rate in the braid region due to two KH vortices can be calculated as
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Figure 11. RCS attenuation due to the oval boundary. ——, δc = 0.55 cm; · · · · · ·, δc = 2.78 cm;◦, frequencies corresponding to the Kwajalein experiment.

ebraids = 2ΓKH/[2π(λKH/2)2]. Finally, the thickness of the braids is obtained as δbraids =
(2κ/ebraids)

1/2. The minimum value of this quantity along the destabilized upper half
of the oval in the Kwajalein experiment is 0.55 cm. The corresponding attenuation
factor, shown in figure 11 as the solid line, is in accord with the observations: there
is very little attenuation at 5.66 GHz but a lot at 35 GHz.

7. Practical recommendations
7.1. Prospects for detection of the vortex cores

No test so far has been at frequencies as low as 50 MHz where, according to
the analysis, the density gradient in the vortex cores reflects (figure 3). Since this
mechanism is independent of atmospheric conditions, it is worthwhile to discuss its
potential use in air traffic control (ATC).

(i) It is fortunate that 50 MHz is where many radars operate around the world
for atmospheric profiling. Such radars are called ST or MST (M: mesospheric, S:
stratospheric, T: tropospheric) radars. Thus the predicted reflectivity could be tested.

(ii) Rain clutter is not a problem at this frequency, though clutter from clear-air
turbulence might be.

(iii) Most ST radars are used for measurements in the high atmosphere but recently
a restriction on minimum range (which arises due to ringing of the antenna system
after a pulse is transmitted) has been partially overcome and a boundary layer profiler
has been developed (Vincent et al. 1998). It has a height coverage of 400–3200 m. This
radar achieves a range resolution of 150 m with a pulse width of 1 µs. The minimum
range restriction may be eliminated by using separate transmit and receive antenna
arrays (Dr H. McDonald of NASA Ames suggested this). The range resolution may
be improved by using pulse compression techniques.
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Half-power beam
Range (km) RCS diameter (m) Power (W)

0.4 −87.9 70 1.40
1 −83.9 175 21.7
2 −80.9 349 173
3 −79.1 524 586

Table 3. Power required to detect a vortex of a heavy aircraft at various ranges for the type of
radar discussed in the text.

(iv) The transmitter power required for detection is

Pt =
(4π)3R4Np × SNR

GtGrλ2Lsys ×RCS
, (7.1)

where Np = −185 dB W and Lsys = −7 dB are the noise power and system loss
for an ST radar (Kingsley & Quegan 1992, p. 199). SNR = 20 dB is the desired
signal-to-noise ratio, λ = 6 m is the wavelength. For an antenna array the half-power
beamwidth (in degrees) broadside to the array is (Skolnik 1970, chap. 11, p. 2)

∆θ1/2 ≈ 100√
Nel

, (7.2)

where Nel is the number of elements, and the gain on transmit and receive is
Gt = Gr ≈ πNel. We consider a modest array of 10 × 10 elements spaced λ/2 = 3 m
apart. The corresponding half-power beamwidth is ∆θ1/2 = 10◦ which implies an e−1

half-width of a Gaussian beam of θb = 8.49◦. Table 3 shows that the powers required
to detect the vortex of a heavy aircraft at various ranges are quite modest. A smaller
array size may be achievable by using individual elements (such as yagis) which are
more directive than dipoles.

(v) ST radars have limited steering capability, usually just a few fixed beam
directions. The ability to steer the beam by using phase differences among elements
would have to be incorporated into such radars if they are to be used for ATC. Since
it is unlikely that three-dimensional disturbances will exist in the vortex across a
broad spectrum of wave angles, detection may be possible at only normal incidence.

(vi) Detection of the vortices at 50 MHz may also be combined with a RASS
(Radio Acoustic Sounding System). The corresponding acoustic frequency is 114 KHz
for which the attenuation is 1 dB km−1. This should be compared with the higher
attenuation of 16 dB km−1 in the RASS system of Rubin (2000) which has the
advantage of being smaller.

(vii) Finally let us note that the oval will also scatter at 50 MHz with the same
strength as at higher frequencies (see figure 9).

The above estimates have ignored detection of aircraft vortices in landing con-
figurations. This would have to be taken into account in a fully-fledged feasibility
study.

7.2. A note on the role of engine exhaust

At approach, the exhaust of a heavy aircraft has a temperature of 477 K and each
engine emits 1200–6000 lb h−1 of water vapour (P. Spalart, private communication).
If we consider the temperature contribution alone (the first term in equation (2.1))
we obtain ∆εr = −2.1 × 10−4. This is roughly two orders of magnitude greater than
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for the density variation in each vortex and for atmospheric density stratification and
would lead to a 40 dB greater radar cross-section. However, Gilson (1992) reports
that the wake RCS at 1 km behind the plane did not change when the engines were
run at idle or full power. This is probably due to turbulent mixing of the exhaust
with the ambient. Diversion of some engine exhaust into the laminarizing flow of the
vortex cores may allow the exhaust to maintain its heat further downstream.

To estimate the contribution of water vapour in the exhaust, we use the upper
value of 6000 lb h−1 per engine and assume an exhaust diameter of 2 m. This yields
a partial pressure of vapour equal to 1.1 mb and a contribution of ∆εr of 3.7× 10−6

which is much smaller than that due to temperature.

8. Summary and suggestions for future work
We will confine our closing remarks to three aspects: (1) the scattering analysis;

(2) reflectivity of the density gradient in each vortex; (3) reflectivity of the wake in a
stratified atmosphere.

(1) Whenever the index of refraction has a correlation length (in any cross-beam
direction) that is comparable to or larger than the beamwidth (as is true for our
two-dimensional models), it becomes necessary to a priori include the variation in
beam amplitude. In addition, one has to use the far-field Green’s function and retain
sphericity of the incident wavefronts, the two being equally important (conditions
under which these requirements may be disregarded are mentioned herein). In a real
wake, the axial correlation length of the refractive index will be large initially, may
decrease if turbulence develops (which is less likely within the vortex cores), and will
ultimately tend towards the value for the ambient atmospheric turbulence as the wake
dissipates. The more general analysis undertaken here may be called for during one
or more of these stages. The character of the solutions of the more general analysis
suggests that the Bragg condition from Tatarski’s analysis remains a valid guiding
principle; however, a methodical study of this should be made. We followed Tatarski
in invoking the weak scattering approximation, but limit frequencies estimated for
its validity were exceeded for many results we presented. Is strong scattering really
important here?

(2) The point of this work was to answer the following question: are aircraft
wakes sufficiently reflective to radar that they may be detected with reasonable
powers at ranges appropriate to air traffic control and at frequencies not affected
by precipitation? We observed that the density gradient in the vortex core scatters
at 50 MHz, a frequency low enough that clutter due to precipitation is not an issue.
Many radars used for atmospheric profiling are designed for this frequency so a test
should be possible. The powers required for such radars to detect the vortex cores
appear to be modest but some developments need to occur before they can provide
a method for vortex detection in the context of air traffic control. These include
beam scanning, reduction of minimum range, improvement of range resolution, and
mitigation of the deleterious effects of core waviness on reflectivity.

(3) Transport of air within an oval in a non-adiabatic atmosphere provides a
mechanism for scattering that dominates over vortex core reflectivity at frequencies
somewhat higher than 50 MHz. We employed this mechanism to calculate radar
cross-sections measured in an experiment and the results were of the right magnitude.
However, the present two-dimensional model gave a sharp cut-off in reflectivity
away from normal incidence, a feature not present in the experiments. Estimates
indicated that in the experiment the oval boundary was very likely turbulent due to
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both Kelvin–Helmholtz and centrifugal instabilities, and this may account for the
difference. A computational study of this turbulence would be important not only
from the standpoint of radar scattering but also to predict the rate of wake descent
in a stratified atmosphere. Since stratification has seasonal, diurnal and geographic
variations, its use as a basis for wake detection would have to be combined with
atmospheric measurements and would be unusable in neutral conditions. Finally, the
present work considered interaction of the wake with a calm atmosphere having
only a mean refractive index gradient. Interaction of the wake with pre-existing
turbulent fluctuations (Gilson, private communication) of refractive index could also
be important under certain conditions.

We thank Drs W. Gilson and P. Ingwersen for providing us with raw data and
other information on the experiment, Dr P. Spalart for suggesting that we account for
density variation inside a vortex core and for supplying the information referred to
in the text. Thanks are also due to Professor J. Jimenez for suggesting the inclusion
of water vapour in the refractive index and to Dr M. Wang for help with integrals.
Finally, the comments of two anonymous referees were useful.

Appendix A. The electric field in the incident beam: E i(x, y, z)

The incident field is obtained using aperture antenna analysis (Silver 1949) where
the far diffraction field is derived from the field on a surface (the ‘aperture’) near the
antenna. We shall take the aperture to be circular.

For convenience we use a coordinate system (x, y, z) centred on the aperture. The
plane of the aperture is x, y and z is normal to the aperture. These coordinates
should not be confused with those in the rest of the paper where they refer to wake
coordinates and where (x∗, y∗, z∗) refer to aperture coordinates.

A.1. Conical beam

The electric field created in the far zone by a plane aperture A on which the electric
field is specified to be E = Ea

x(x
′)x̂ is (Silver 1949, p. 167, equation 124):

E i(x) =
ik

4πr
x̂eikr(1 + cos θ)

∫
A

Ea
x(x
′)eikx′·x/|x| dx′. (A 1)

Here (r, θ) are the spherical polar coordinates of x, θ being the polar angle measured
from the z-axis. Equation (A 1) is derived starting from vector Kirchhoff integrals and
introducing several approximations valid in the limit of small wavelength compared
to aperture diameter in which case the significant portion of the energy is confined
to small θ. In addition, the phase of the field on the aperture has been assumed to be
constant.

For an axially symmetric distribution of Ea
x on the aperture the integral in (A 1)

becomes

IA = 2π

∫
%′d%′Ea

x(%
′)J0(k%

′ sin θ), (A 2)

where %′ =
√
x′2 + y′2. Two aperture illuminations are considered. For the case of

uniform illumination:

Ea
x(%) =

{
E0, % 6 %a,
0, otherwise,

(A 3)
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we obtain

IA = 2πE0%
2
a

J1(k%a sin θ)

k%a sin θ
. (A 4)

For the case of Gaussian illumination of the aperture

Ea
x(%) = E0 exp(−(%/σa)

2), (A 5)

we obtain

IA = πσa
2E0 exp(− 1

4
k2σa

2 sin2 θ), (A 6)

thanks to Gradshteyn & Ryzhik (1980, p. 717, 6.63.4).
To calculate the radar cross-section according to (1.2) requires the maximum value

at the target of the time-averaged power flux S i = 1
2
Re{E i ×H i

∗}, where H i can be
obtained from the Maxwell equation H i = 1/(iωµ0)∇ × E i. If in evaluating ∇ × E i

from (A 1) we retain only the leading-order term (O(1/r)) and introduce µ0 = 1/(c2ε0)
we obtain

S i = 1
2
cε0(E

i
x)

2 z

r
ẑ, (A 7)

where E i
x denotes the x component of E i. The radar cross-section is independent of

the amplitude E0 since both incident and scattered powers are proportional to E2
0 .

For convenience, we chose

E0 =

{
2Rt/(ik%

2
a) for uniform aperture illumination,

2Rt/(ikσa
2) for Gaussian aperture illumination,

(A 8)

in order to make equal to eikRt the maximum value of E i
x with respect to θ at fixed

r = Rt. The denominator in (1.2) is then

maximum power density in incident beam at target = 1
2
cε0. (A 9)

In the calculations, instead of specifying the aperture radius as the input parameter,
we specify the half-beamwidth θb and from it calculate the implied value of %a. For
the Gaussian beam θb is defined to be where IA drops to e−1 of its peak value and
for the Bessel beam it is defined to be the location of the first zero thus giving

%a =
3.83171

k sin θb

, σa =
2

k sin θb

. (A 10)

A.2. Approximate cylindrical beam

The cylindrical beam for the approximate scattering analysis in § 4 is obtained after
introducing four approximations in (A 1) and (A 2): (a) replace cos θ by 1 assuming
small angular beamwidth; (b) replace r in the denominator by a constant range Rt;

(c) replace sin θ = u/r by u/Rt, where u =
√
x2 + y2 is the normal distance from the

beam axis; (d ) replace eikr with eikz . Approximations (b) and (c) are valid when the
relative change in beam width across the near and far ranges of the target is small.
For approximation (d ), however, a condition similar to the the far-field condition
(1.6) must hold:

ε(d) =
πL2

s

λRt

� 1. (A 11)

Introducing these approximations into (A 1) gives

E i =
ik

2πRt

x̂eikzIA. (A 12)
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Substituting (A 4) and (A 6) for IA into (A 12), using (A 10) and substituting values of
E0 from (A 8) we obtain

E = x̂eikz 2J1(u/σ)

u/σ
, (A 13)

σ ≡ Rt sin θb/3.8371 (A 14)

for the Bessel function beam and

E = x̂eikz exp(−u2/σ2), (A 15)

σ ≡ Rt sin θb (A 16)

for the Gaussian beam. For the incident power flux in the cylindrical beam we use
the value (A 9) for the original conical beam.

Appendix B. Scattering of a pulse
Since the scattering problem is linear, treatment of a pulse is simply a matter of

Fourier superposition of the results of the time-harmonic analysis.
We begin by reducing the original vector problem to a scalar problem. This will

provide the set-up for using formulae already derived in Ishimaru (1978). For the
time-harmonic analysis the incident electric field (A 1) has the form

Ē i(x, t;ω) = x̂Re[Fi(x, ω)e−iωt]. (B 1)

As in Appendix A we are using x to denote aperture coordinates. We assume the
same spatial dependence for the magnetic field:

H̄ i(x, t;ω) = cε0ŷRe[Fi(x, ω)e−iωt]. (B 2)

According to Maxwell’s equations Ē is related to the curl of H̄ and therefore Ē and
H̄ should in general have different spatial dependence. However, to the extent that
the wavelength is much smaller than the beamwidth, derivatives of Fi(x, ω) normal
to the beam axis will be much smaller than derivatives along the beam and the forms
(B 1) and (B 2) will nearly satisfy Maxwell’s equations and be divergence free.

Henceforth we will write the incident field as a function of time only, taking it
to be evaluated at the point x = (0, y0, 0) where the beam centreline intersects the
centreplane of the target. By a Fourier synthesis of (B 1) and (B 2) in time an arbitrary
L2 time dependence can be constructed:

Ē i(t) = x̂Re[ui(t)e
−iω0t], (B 3)

H̄ i(t) = cε0ŷRe[ui(t)e
−iω0t], (B 4)

where we have chosen to write the time dependence as the product of a carrier
e−iω0t and a complex modulation ui(t). The complex modulation is itself written as a
product:

ui(t) = f(t)eiφ(t), (B 5)

where f(t) and φ(t) are real and describe amplitude and phase modulation, respec-
tively.

We now assume that for the time-harmonic analysis, the scattered field evaluated
at the receiver is also of the form (B 1) and (B 2) with Fi replaced by Fs. This was
verified to be true from the numerical results. Therefore by Fourier superposition

Ē s(t) = x̂Re[us(t)e
−iω0t], (B 6)

H̄ s(t) = cε0ŷRe[us(t)e
−iω0t]. (B 7)
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The incident and scattered fields thus depend only on the scalar functions ui(t) and
us(t) and we are thus set-up to use Ishimaru’s (1978, vol. 1, p. 94) discussion for
scattering by a pulse. Using the fact that scattering is a linear and causal problem,
Ishimaru derives the following ‘input/output’ relation for the complex modulation of
the scattered pulse in terms of the modulation of the incident pulse:

us(t) =

∫ ∞
−∞
Ui(ω)H(ω + ω0, t) e−iωt dω, (B 8)

where

Ui(ω) =
1

2π

∫ ∞
−∞
ui(t) eiωt dt. (B 9)

H(ω, t) has the interpretation that if ui(t) = 1 (i.e. we have the time-harmonic case)
then us(t) = H(ω0, t). In the time-harmonic analysis we chose the incident field to
have a normalization such that ui(t) = exp(ikRt). Hence H(ω0, t) is simply the us we
calculate in the time-harmonic analysis divided by exp(ikRt). Since we have considered
a steady target, thus losing the doppler effect, H(ω0, t) does not depend on time.

It is instructive to obtain the form of the returned pulse implied by the approximate
analysis. For backscattering at normal incidence and using the asymptotic form of
the Bessel function for large ka, equations (4.25) and (4.33) give

E s(x) = x̂
exp(ik(Rt + Rr))

4Rr

(ka)1/2σ∆ε0r cos(2ka− 3
4
π) (B 10)

The bandwidth of the pulse is typically small compared to the centre frequency and
so ka can be considered to be constant when outside the cosine. Hence, over the
bandwidth of the pulse

H(ω) = A exp(ikRr) cos(2ka− 3
4
π), k = ω/c, (B 11)

where

A =
∆ε0rσ(k0a)

1/2

4Rr

(B 12)

is a real constant independent of ω, and k0 is the wavenumber corresponding to the
centre frequency. Substituting the form (B 11) into the input/output relation (B 8)
gives the complex modulation us(t) of the returned pulse. When this is substituted
into (B 6) one obtains

Ē s(t) = x̂|A|/2{f(t′−) cos[φ(t′−)− ω0t
′
− + φA − 3

4
π]

+f(t′+) cos[φ(t′+)− ω0t
′
+ + φA + 3

4
π]}, (B 13)

where

t′− = t− Rr

c
− 2a

c
, t′+ = t− Rr

c
+

2a

c
, (B 14)

a is the radius of the oval, and φA is the phase angle of A. Equations (B 13) and (B 14)
have the following interpretation. The returned pulse consists of the incident pulse
reflected twice, each time with reflection coefficient A/2 and phase shifts φA = ±3π/4.
The two reflections occur at z = ±a. The time shift −Rr/c accounts for the travel time
from the point z = 0 to the receiver while the additional time shifts ±2a/c account
for the round-trip time required to travel from z = 0 and the two points z = ±a.

For the Born analysis the received pulse was obtained using the following procedure.
First, H(ω) was obtained from the time-harmonic analysis for ω spanning an interval
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(∆ω) consisting of few pulse bandwidths about the centre frequency. A convenient
auxiliary quantity T (ω) was calculated such that

H(ω, t) =
T (ω) exp(ikRr)

Rr

. (B 15)

Next T (ω) was multiplied by a Hanning window and Fourier analysed such that

T (ω) =
∑
m

T̂m exp

[
i

2π

∆ω
m(ω − ω0)

]
. (B 16)

Knowing the coefficients T̂m one can obtain the complex modulation of the received
signal by substituting (B 16) and (B 15) into (B 8):

us(t) =
1

Rr

∑
m

T̂mui

(
t− Rr

c
− 2πm

∆ω

)
. (B 17)

Rectangular and Gaussian forms of unit amplitude were implemented for the
amplitude modulation:

f(t) =

{
1, |t| 6 τ/2,
0, elsewhere

, f(t) = exp(−t2/τ2), (B 18)

where τ is the pulse duration. In this paper only the results for the Gaussian pulse
are plotted since the rectangular pulse gave very close RCS results (within 0.25 dB
for a few spot checks). For FM a linear frequency variation (chirp) was considered:

φ(t) = παt2. (B 19)

Within the pulse width, the spread ∆fFM in the local frequency is

∆fFM = |α|τ. (B 20)

The sign of α (up-chirp vs. down-chirp) was found to not matter. Table 2 gives τ and
∆fFM for the tests at Kwajalein.

The instantaneous power flux density vector associated with the incident pulse (B 3)
and (B 4) is

S̄ i = Ē i × H̄ i = ẑcε0f
2(t) cos2(φ(t)− ω0t). (B 21)

Finally, the instantaneous scattered power flux density vector associated with (B 6)
and (B 7) is

S̄ s(t) = ẑcε0|E s(t)|2. (B 22)

From these we calculate an instantaneous RCS:

RCS(t) = 4πR2
r

|S̄ s(t)|
|S̄ i|max

. (B 23)
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